
2015.09-present: IRCBC, SIOC, CAS
2011-2015:?Postdoc,?JHU
2010: Postdoc,?UMD
2004-2009:?Ph.D. in Neuroscience,?UMD
1999-2003:?B.S. in Biological Science,?Tsinghua Universitiy
神經(jīng)功能調(diào)控與神經(jīng)退行性疾病早期發(fā)病機(jī)制。
神經(jīng)細(xì)胞是大腦的功能單位,它們的正常調(diào)控是維持所有高等認(rèn)知功能,如感知、學(xué)習(xí)與記憶儲(chǔ)存等的生理基礎(chǔ);而異常調(diào)控則會(huì)直接造成神經(jīng)功能障礙,是各類神經(jīng)系統(tǒng)疾病,尤其是退行性疾病的主要原因。因此,深入研究神經(jīng)功能的調(diào)控機(jī)制是認(rèn)識(shí)大腦運(yùn)作的關(guān)鍵,同時(shí)也是了解神經(jīng)系統(tǒng)疾病發(fā)病機(jī)制、促進(jìn)疾病預(yù)防和治療的重要手段。
神經(jīng)功能受到很多因素調(diào)控,其中我們最感興趣的是睡眠在其中發(fā)揮的作用。睡眠作為普遍存在于生物界的一個(gè)保守的生理現(xiàn)象,對(duì)維持生物機(jī)體功能包括腦功能至關(guān)重要。然而,目前我們對(duì)睡眠如何調(diào)控神經(jīng)功能了解得非常有限。另外,神經(jīng)系統(tǒng)疾病如退行性疾病患者大都患有不同程度不同類型的睡眠障礙,且睡眠障礙通常遠(yuǎn)早于腦疾病其他病癥出現(xiàn),說(shuō)明睡眠與腦疾病有非常密切的聯(lián)系。因此,我們實(shí)驗(yàn)室研究的主要問(wèn)題包括:1)正常生理狀態(tài)下,睡眠對(duì)神經(jīng)功能如神經(jīng)信號(hào)傳導(dǎo)、神經(jīng)可塑性、神經(jīng)網(wǎng)絡(luò)穩(wěn)態(tài)等的調(diào)控作用和調(diào)控機(jī)制;2)睡眠障礙與神經(jīng)退行性疾病的相互關(guān)系;3)神經(jīng)退行性疾病的早期發(fā)病機(jī)制研究。我們將綜合運(yùn)用體內(nèi)外電生理和顯微成像、光遺傳、藥物學(xué)、細(xì)胞生物學(xué)、和行為學(xué)分析等多種手段,來(lái)研究以上問(wèn)題。
2013 Best Poster Award Johns Hopkins University
2008 Ann Wylie Dissertation Fellowship University of Maryland College Park
2008 Travel Award University of Maryland College Park
2007 Best Poster Award University of Maryland College Park
2004 Block Grand Fellowship University of Maryland College Park
1.?X-R Yao, Y Liu, W-T Zheng, K-W He*. Behavior- and circuit-specific cortico-striatal decoupling during the early development of Parkinson's disease-like syndrome. bioRxiv 2024.08.13.607859 (Under revision in npj Parkinson's Disease)
2.?Zhu J, Yang W, Ma J, He H, Liu Z, Zhu X, He X, He J, Chen Z, Jin X, Wang X, He K, Wei W, Hu J. Pericyte signaling via soluble guanylate cyclase shapes the vascular niche and microenvironment of tumors. EMBO J. 2024 Mar 25. doi: 10.1038/s44318-024-00078-5. Epub ahead of print. PMID: 38528180
3.?Cao Z, Min X, Xie X, Huang M, Liu Y, Sun W, Xu G, He M, He K#, Li Y, Yuan J#.?RIPK1 activation in Mecp2-deficient microglia promotes inflammation and glutamate release in RTT. PNAS.?2024 Feb 6;121(6): e2320383121.?doi: 10.1073/pnas.2320383121.?Epub 2024 Jan 30.?PubMed PMID: 38289948.
4.?Guo R., Liu J., Min X., Zeng W., Shan B., Zhang M., He Z., Zhang Y., He K.,?Yuan J.,?Xu D.#.?Reduction of DHHC5-mediated Beclin 1 S-palmitoylation underlies autophagy decline in aging.?Nat Struct Mol Biol. 2024 Jan 4; doi: 10.1038/s41594-023-01163-9. PubMed PMID: 38177673.
5.?Min X, Wang JY, Zong FJ, Zhao J, Liu N, He KW#.?miR-34a regulates silent synapse and synaptic plasticity in mature hippocampus. Prog Neurobiol. 2023 Jan 13;222:102404. doi: 10.1016/j.pneurobio.2023.102404.
6.?Zong FJ, Min X, Zhang Y, Li YK, Zhang XT, Liu Y, He KW#. Circadian time- and sleep-dependent modulation of cortical parvalbumin-positive inhibitory neurons. EMBO J. 2023 Feb 1;42(3):e111304. doi: 10.15252/embj.2022111304. Epub 2022 Dec 7. PMID: 36477886; PMCID: PMC9890233.
7.?Wang JY, Ma GM, Tang XQ, Shi QL, Yu MC, Lou MM, He KW#, Wang WY#. Brain region-specific synaptic function of FUS underlies the FTLD-linked behavioural disinhibition. Brain. 2023 May 2;146(5):2107-2119. doi: 10.1093/brain/awac411. PubMed PMID: 36345573
8.?T Li, Y Yin, Z Zhou, J Qiu, W Liu, X Zhang, K He, Y Cai, ZJ Zhu#?(2021) Ion mobility-based sterolomics reveals spatially and temporally distinctive sterol lipids in the mouse brain, Nature Communications?12 (1), 1-13
9.?S Mihalas, A Ardiles, K He, A Palacios, A Kirkwood#?(2021) A Multisubcellular Compartment Model of AMPA Receptor Trafficking for Neuromodulation of Hebbian Synaptic Plasticity, Frontiers in Synaptic Neuroscience, 38
10.?Long H*, Zheng W*, Liu Y, Sun Y, Zhao K, Liu Z, Xia W, Lv S, Liu Z, Li D, He KW#, Liu C#?(2021) Wild-type α-synuclein inherits the structure and exacerbated neuropathology of E46K mutant fibril strain by cross-seeding. PNAS, 118(20):e2012435118. doi: 10.1073/pnas.2012435118. PMID: 33972418.
11.?M Bridi*, F-J Zong*, X Min N Luo, T Tran, J Qiu, D Severin, X-T Zhang, G Wang, Z-J Zhu, K-W He#, A Kirkwood#?(2020) Daily Oscillations in the Excitation-Inhibition Balance in Visual Cortical Circuits, Neuron, 105(4):621-629.e4. doi: 10.1016/j.neuron.2019.11.011
12.?Bridi MCD, de Pasquale R, Lantz CL, Gu Y, Borrell A, Choi SY, He K, Tran T, Hong SZ, Dykman A, Lee HK, Quinlan EM, Kirkwood A#?(2018) Two distinct mechanisms for experience-dependent homeostasis. Nat Neurosci. 21(6):843-850
13.?He K, Huertas M, Hong S, Tie X, Hell J.W, Shouval H, Kirkwood A#?(2015) Distinct Eligibility Traces for LTP and LTD in Cortical Synapses. Neuron, 88(3): 528-38
14.?Ikrar T, Guo N, He K, Besnard A, Levinson S, Hill A, Lee HK, Hen R, Xu X, Sahay A#?(2013) Adult neurogenesis modulates excitability of the dentate gyrus. Frontiers in Neural Circuits. 7:204
15.?Wang H*, Megill A*, He K, Kirkwood A, Lee HK#?(2012) Consequences of inhibiting amyloid precursor protein (APP) processing enzymes on synaptic function and plasticity. Neural Plasticity. 2012:272374
16.?He K, Petrus E, Gammon N, Lee HK#, (2012) Distinct sensory requirements for unimodal and cross-modal homeostatic synaptic plasticity. Journal of Neuroscience. 32(25):8469-74
17.?Huang S*, Trevi?o M*, He K*, Ardiles A, Pasquale R, Guo Y, Palacios A, Huganir R, Kirkwood A#?(2012) Pull-push neuromodulation of LTP and LTD enables bidirectional experience-induced synaptic scaling in visual cortex. Neuron. 73(3):497-510 (Recommended by F1000Prime)
18.??Qian H, Matt L, Zhang M, Nguyen M, Patriarchi T, Koval OM, Anderson ME, He K, Lee HK, Hell JW#?(2012) The β2 Adrenergic Receptor Supports Prolonged Theta Tetanus - induced LTP. J Neurophysiol.
19.?He K, Goel A, Ciarkowski CE, Song L, Lee HK#?(2011) Brain area specific regulation of synaptic AMPA receptors by phosphorylation. Commun Integr Biol. 4(5):569-72
20.?He K, Lee A, Song L, Kanold PO, Lee HK#?(2011) AMPA receptor subunit GluR1 (GluA1) serine-845 site is involved in synaptic depression but not in spine shrinkage associated with chemical long-term depression. Journal of Neurophysiology. 105(4):1897-907
21.?Lee HK, Takamiya K, He K, Song L, Huganir RL#?(2010) Specific roles of AMPA receptor subunit GluR1 (GluA1) phosphorylation sites in regulating synaptic plasticity in the CA1 region of hippocampus. Journal of Neurophysiology. 103(1):479-89
22.?He K, Song L, Cummings LW, Goldman J, Huganir RL, Lee HK#?(2009) Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation. PNAS, 106(47):20033-8(Recommended by F1000Prime)
23.?Lee HK, Takamiya K, Kameyama K, He K, Yu S, Rossetti L, Wilen D, and Huganir RL #?(2007) Idenfication and characterization of a novel phosphorylation site on the GluR1 subunit of AMPA receptors. Mol Cell Neuroscience, 36(1):86-94.
24.?Laird FM*, Cai H*, Savonenko AV*, Farah MH*, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC#?(2005) BACE1, a major determinant of selective vulnerability of the brain to amyloid- amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. Journal of Neuroscience, 25(50):11693-11709.
* Equally contributing authors.?#?Corresponding author

